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Abstract Rubber trees infected with a host-specific cassii-
colin toxin often experience considerable leaf fall, which in
turn results in loss of crop productivity. It was recently
revealed that cassiicolin-specific single-chain variable frag-
ments (scFv) can successfully reduce the toxic effects of
cassiicolin. However, the detailed mechanism of antibody
action remains poorly understood. The primary sequence of
the newly sequenced cassiicolin-specific scFv was highly
homologous to several members of single-chain antibodies
in the 14B7 family. In this study, with the aid of homology
modeling, the three-dimensional structure of cassiicolin-
specific scFv was elucidated, and was found to exhibit a

characteristic immunoglobulin fold that mainly consists of
β sheets. Additionally, molecular docking between the
modeled scFv antibody and the available three-dimensional
crystal structure of cassiicolin toxin was also performed.
The predicted structural complex and the change in
accessible surface area between the toxin and the scFv
antibody upon complexation reveal the potential role of
certain complementarity determining region (CDR) amino
acid residues in the formation of the complex. These
computational results suggest that mutagenesis experiments
that are aimed at validating the model and improving the
binding affinity of cassiicolin-specific scFv antibodies for
the toxin should be performed.
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Introduction

Cassiicolin, a host-selective toxin (HST) [1], is produced by
the pathogenic fungus Corynespora cassiicola (Berk. &
Curt.) Wei. It infects a diverse range of crops, including
economically important rubber [2]. Infection of rubber trees
with C. cassiicola, characterized by the development of
necrotic lesions and browning of the leaves, causing massive
defoliation and thus crop losses [3], is known as Corynes-
pora leaf fall disease (CLFD) [1]. In 1998, according to the
IRRDB Disease Survey, CLFD was identified as the primary
pathogenesis affecting the rubber tree population [4], mainly
in Asia. It has also been reported that the toxin secreted by
the fungus C. cassiicola that is responsible for CLFD is a 27-
residue O-glycoprotein, cassiicolin [5, 6].
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Recombinant single-chain variable fragment (scFv) anti-
bodies have been successfully employed in plants for
various different reasons [7, 8]. Recombinant antibody
engineering is an attractive contemporary concept for the
design of high-affinity, protein-based targeting reagents [9,
10], and it is utilized for more than 25% of all the proteins
undergoing clinical trials [11, 12]. Antibodies (immunoglo-
bulins) exhibit a characteristic structure consisting of two
identical heavy and light chains connected together by
disulfide and noncovalent bonds. Intact antibodies offer
high target binding specificity, but slow tissue penetration,
long circulating half-lives and often undesirable effector
functions limit their application in rapid tumor targeting
[11]. Additionally, antibodies have been complexed with
many molecules, including toxins, enzymes and viruses for
prodrug therapy, cancer treatment and gene delivery.
Consequently, recombinant antibody technology has en-
abled knowledgeable manipulations in the construction of
complex antibody library repertoires for the selection of
high-affinity reagents against refractory targets [12]. In the
context of this work, many groups have successfully
engineered fab or scFv molecules into dimers or multimers
for the production of favorably sized high-avidity reagents
for in vivo imaging and therapeutics [13–16]. The co-
authors of this work demonstrated that cassiicolin toxicity
could be efficiently reduced with the aid of recombinant
antibody technology; scFv specific to cassiicolin could bind
and inhibit or decrease the toxic effects of cassiicolin in a
Hevea leaf bioassay [3]. Therein, the authors verified the
toxin-deactivating properties of the cassiicolin-specific
antibody expressed by the scFv clones obtained from the
phage library with a high specificity for cassiicolin [3]. The
translated cassiicolin-specific scFv antibody sequence com-
prises of 268 amino acid residues. However, the three-
dimensional (3D) structure of this antibody has not yet been
determined, imposing significant limitations on a complete
understanding of the antibody recognition mechanism of
cassiicolin. In the absence of an experimentally determined
structure of the unbound antibody or its complex with
cassiicolin, we found that suitable template structures with
significant homology to the sequence under consideration
are available in the protein data bank (PDB) [17]. This
enabled us to develop a modeled 3D structure of the
cassiicolin-specific scFv. Experimental determinations of
the 3D structures of antibodies complexed with protein
antigens have been performed for at least two decades [18–
27]. It has been reported that antibodies to protein antigens
target a discontinuous epitope on the antigen [19]. It is also
known that all six complementarity-determining regions
(CDRs) of the antibody may interact with the antigen [19,
27–29], in addition to some framework residues [19].
However, in the absence of an experimentally determined
3D crystal structure, a comparative method of 3D structure

prediction is utilized. This method predicts the 3D structure
of the target protein on the basis that the available 3D
coordinates of the template structure exhibit reasonable
sequence similarity. Homology modeling of scFvs has been
recently reported for anti-HepG2 single-chain immuno-
globulin, anti-CMV scFv antibody and scFv-GFP fusion
product [30–33].

In the present study, a three-dimensional structural
model of cassiicolin-specific scFv antibody was built on
the basis of the template crystal structure of the anthrax-
neutralizing single-chain antibody 14B7 (PDB code:
3ESU). The predicted scFv antibody was consistent with
the experimentally observed immunoglobulin-like fold,
which mainly consists of β sheets [34, 35]. Since the
antigen structure is already known, this allowed us to dock
the two structures and try to generate a hypothetical model
of the complex. Based on our computational results, the
potential interacting residues of the scFv–cassiicolin com-
plex, as well as the involvement of various cation–π and
hydrophobic interactions were identified, which were
consistent with the experimental findings.

Materials and methods

Cassiicolin-specific scFv antibody sequence

The complete sequence of cassiicolin-specific scFv was
recently reported by Sunderasan et al. [3], and has the
GenBank accession number EU414027. The deduced se-
quence of the cassiicolin-specific scFv antibody consists of
268 amino acid residues and a calculated molecular mass of
29,110.79 Da. The scFv sequence contains a 7 amino acid
(GGSSRSS) linker, a 6 amino acid long histidine (His) tag
and a 12 residue long influenza hemaglutinin (HA) tag at its
C-terminal end.

Template selection and homology modeling

SWISS–MODEL Workspace [36] was used to identify a
suitable template for determining the 3D structure of scFv
by homology modeling. Five different three-dimensional
structural models for the cassiicolin-specific scFv were then
generated using Modeller9v2 [37] on the basis of the 3D
structures of the templates. These models were optimized
by adding hydrogen atoms to each of them at pH 7.0 and
then using CHARMM all-atom forcefield minimization
with the implicit solvent model set to none. Energy was
minimized for at least 1000 steps until the gradient
converged to 0.5 kcal mol−1 using the steepest descent
protocol available in Discovery Studio version 2.0
(Accelrys Software, Inc.) [38] to remove any steric clashes
and to stabilize the models. Ramachandran and Whatcheck
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analysis was performed for subsequent optimization of
all five models using the SAVES [39] web server, and
the model exhibiting the best Ramachandran score and
Whatcheck RMS Z score summary was retained for
further studies.

Multiple sequence alignment and secondary structure
prediction

Multiple sequence alignment was carried out to check the
positions of the CDR regions in the templates and the
query. Since scFv antibodies are known to have β
structures, in order to confirm whether our query sequence
also possessed this type of secondary structure its second-
ary structure was predicted. Multiple sequence alignment of
the cassiicolin-specific scFv antibody and its selected
homologs was carried out using CLUSTALW [40]. Auto-
matic alignments were critically analyzed and compared to
each other. Secondary structural elements of the aligned
proteins were predicted by the Jpred 3 program [41].

Molecular docking

For docking, the 3D structure of cassiicolin from the PDB
(PDB code 2HGO) was used and processed and cleaned in
Discovery Studio version 2.0 by removing all the nonpro-
tein parts. Docking of the cassiicolin-specific scFv (model
4) to the cassiicolin was performed using the automated
initial stage docking algorithm implemented by ZDOCK
[42]. ZDOCK employs a fast Fourier transform to search
every single possible binding mode for the proteins,
evaluating based on shape complementarity, desolvation
energy, and electrostatics.

The output of the ZDOCK was passed to the ClusPro [43]
server with the clustering radius set at 5 Å, and 30
cassiicolin–scFv complexes were retrieved. Again, energy
minimization was performed on all the 30 complexes
returned by ClusPro [43] using the steepest descent protocol
available in Discovery Studio version 2.0 [38]. The energy
minimization criterion was kept the same as the one used to
optimize the homology model of the cassiicolin-specific
scFv antibody (i.e., CHARMM all-atom forcefield minimi-
zation with the implicit solvent model set to none was used).
All 30 cassiicolin–scFv complexes were analyzed for
interacting residues at a cut-off distance of 6 Å using an
in-house program written in PERL.

Computational alanine scanning and accessible surface
area (ASA) or solvent accessibility analysis of the docked
complex

In order to analyze the roles of the interacting residues in
the stability of the scFv–cassiicolin complex, computa-

tional alanine scanning mutagenesis was carried out using
the ROBETTA alanine scanning software [44]. The
computational alanine scanning program employs a simple
free-energy function consisting of a linear combination of
a Lennard–Jones potential, an orientation-dependent
hydrogen-bonding potential, statistical terms approximat-
ing the backbone-dependent amino acid type and rotamer
probabilities, and estimates of the unfolded reference state
energies to calculate the effects of alanine mutations on
the binding free energy of the protein–protein complex
[44].

$$Gbind ¼ $GW
complex � $GW

protein A � $GW
protein B

� �h i

� $GM
complex � $GM

protein A � $GM
protein B

� �h i

ð1Þ
where

ΔΔGbind is the predicted change in binding free energy
upon alanine mutation

$GW
complex is the predicted change in protein stability of

the wild-type complex
$GW

protein A is the predicted change in protein stability of
protein A in the wild-type complex

$GW
protein B is the predicted change in protein stability of

protein B in the wild-type complex
$GM

complex is the predicted change in protein stability of
the mutant complex

$GM
protein A is the predicted change in protein stability of

protein A in the mutant complex
$GM

protein B is the predicted change in protein stability of
protein B in the mutant complex.

The input for the computational alanine scanning
consisted of a three-dimensional modeled structure of
the scFv–cassiicolin complex, and it reported a list of
potential amino acids that are predicted to drastically
destabilize the interface when mutated to alanine,
similar to the results of experimental alanine-scanning
mutagenesis. These energetically important residues or
“hotspots” were defined by Clackson and Wells as an
experimentally observed change in binding free energy
upon alanine substitution of more than 1 kcal mol−1 in
their work on the binding of human hormone to its
receptor [45].

Further analysis of the selected complexes was
performed by calculating the change in accessible
surface area (ASA). The total ASAs were calculated
for the unbound structures and for the complexes using
the DSSP [46] program. The changes in ASA for the
complexes were calculated by subtracting the total ASA of
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the complex from the sum of the ASAs of the unbound
structures [47]:

$ASA ¼ ASAcomplex � ASAscf þ ASAcf½ �: ð2Þ

Here, ΔASA denotes the interface area (to be comput-
ed), ASAcomplex refers to the total ASA of the docked
complex, ASAscf is the ASA of free cassiicolin-specific
scFv, and ASAcf is the ASA of free cassiicolin in the
modeled structures.

Results and discussion

Homology modeling

The 3D structure of the cassiicolin-specific scFv antibody
was built by homology modeling based on the recently
determined template crystal structure of the anthrax-
neutralizing single-chain antibody 14B7 (PDB code:
3ESU) [48]. Templates were identified with the help of
SWISS-MODELWorkspace [36] and the 3D coordinates of
neutralizing single-chain antibody 14B7 (PDB code: 3ESU,
chain F) was selected as the final template due to its high-
resolution structure (1.30 Å) and ∼61% of sequence identity
with the target cassiicolin-specific scFv. In order to validate
whether our selection of template for homology modeling
was correct, we also performed a protein structure compar-
ison between our modeled and template structures using the
secondary structure matching (SSM) [49] analysis tool.
Structure alignment results also confirmed that the murine
monoclonal antibody (PDB code 3ESU) was the best
template for model building. SSM offers various different
types of measuring scores to aid structural comparison: (i)
Q score, which represents the quality function of Cα
alignment; (ii) P score, which represents minus the
logarithm of the P value (the higher P score, i.e., the lower
P value, the more statistically significant the match; for an
alignment to be statistically significant, the P score must be
greater than 3); (iii) Z score, which measures the statistical
significance of a match in terms of Gaussian statistics (the
higher Z score, the higher the statistical significance of the
match). Figure 1 summarizes all of these scores as well as
the RMSDs for our modeled cassiicolin-specific scFv
antibody and its homologs in the PDB [17]. Figure 1
shows that the Q score between the modeled query and
3ESU is 0.70. This score only reaches 1 for similar
structures. Similarly, very high values of the P score
(17.4) and Z score (13) indicated that 3ESU was a high-
quality template for homology modeling.

Since there was no alignment at the C-terminal region,
15 residues in addition to the histidine (His) and hemaglu-
tinin (HA) tags were removed before building the model

and five model structures were generated in this way. After
minimizing the energy and stabilizing the models by
removing steric clashes, Ramachandran and Whatcheck
analysis was performed on all five models using the SAVES
[39] web server. Although a few residues (ALA13 and
THR50) were found in the disallowed regions of the
Ramachandran plot, and they possibly represent incorrect
side-chain orientations, we did not try to correct them, as
they lie outside the interface and have no effect on the
recognition process. Among all of these models, model 4
exhibited the best Ramachandran score and Whatcheck
RMS Z score summary and thus was selected for further
analysis (Tables 1 and 2). The selected model has 88.6% of
its residues in the allowed region, 7.5% in the additionally
allowed region and 3% in the generously allowed region.
Only 1% of its residues were in the disallowed regions
(Fig. 2).

The modeled structure of cassiicolin-specific scFv
and its template murine monoclonal antibody exhibit
the characteristic immunoglobulin fold indicating a
large binding surface formed by the six CDRs [48].
Both of these scFv antibodies have practically the same
folds and consist chiefly of β sheets. The presence of β
sheets within the V domains of antibodies is a well-
known fact [34, 35].

Multiple sequence alignment and secondary structure
prediction

The amino acid sequences of cassiicolin-specific scFv
antibody and its closest homologs with the PDB [17] codes
1MOEA, 3ESUF, 3ESVF, 2GJJA and 1H8SA were aligned
with the CLUSTALW [40] algorithm. Given their amino
acid sequences, their secondary structures were also
predicted and analyzed by the Jpred 3 program [41]. The
secondary structure of the cassiicolin-specific scFv anti-
body showed a close similarity to the whole structures of
the prototype scFv antibodies, which consisted mainly of β
strands [34]. Furthermore, in spite of several amino acid
variations in the primary structures of cassiicolin-specific
scFv and its homologs, their secondary structures turned
out to be identical. Based on the alignment, it can be seen
that all the light chain CDRs are of equal length, but the
CDRs of heavy chains show some differences (Fig. 3).
Despite these differences in the lengths of CDRs, these
regions are rich in hydrophobic residues that are important
for hydrophobic interactions and are found to predominant
in protein–protein interactions [50, 51].

Molecular docking

The docking of cassiicolin onto the scFv antibody was
performed with the help of ZDOCK [42] and the top 2000
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putative scFv antibody–cassiicolin binding configurations
were retained in the final results of ZDOCK [42]. These
2000 scFv antibody–cassiicolin binding configurations
from ZDOCK [42] were passed to the ClusPro [43] server,
which is an automated rigid-body docking and discrimina-
tion method that quickly filters docked conformations by
selecting those with favorable desolvation and electrostatic
properties, clusters the retained structures using a hierar-
chical pair-wise RMSD algorithm, and selects the centers of
the most populated clusters as predictions for the unknown
complex [43]. In this way, 30 docked complexes were
generated, and each of these 30 complexes were again
optimized via CHARMM forcefield minimization using the
steepest descent algorithm in Discovery Studio 2. Out of
these 30 complexes, we selected complex 6 because it
showed interactions at 5 out of the 6 CDR regions. On the

other hand, the potential energy of complex 30 was slightly
lower than that of complex 6, but it exhibited interactions at
only 4 out of the 6 CDR regions. Both of these complexes
showed similar changes in ASA upon binding to the
modeled VH and VL regions of cassiicolin-specific scFv
(model 4). Table 3 shows a comparison between the
energies and the potential CDRs that may participate in
the complex formation. Another reason for selecting
complex 6 was that it was ranked much higher than
complex 30 by the ClusPro server [43]. A comparison of
various interaction energies (interaction energy, electrostatic
interaction energy and VDW interaction energy) for
complex 6 is shown in Fig. 4. The CDRs of both the light
and heavy chains of the scFv antibody face cassiicolin in
the antibody–antigen complex. Within the Fv domains, the
residues in scFv that were involved in contacts occur

Model 1 Model 2 Model 3 Model 4 Model 5
(−12667.20) (−12921.88) (−12609.37) (−2635.03) (−2372.59)

Bond lengths 1.40 1.44 1.37 1.37 1.42

Bond angles 1.38 1.40 1.38 1.39 1.40

Omega angle restraints 0.88 0.81 0.78 0.87 0.88

Side-chain planarity 0.33 0.46 0.32 0.37 0.37

Improper dihedral distribution 0.93 1.07 0.98 0.97 1.01

Inside/outside distribution 1.01 1.03 0.97 1.00 1.04

Average 0.99 1.03 0.97 1.00 1.02

Table 1 Whatcheck RMS Z-
score summary. The potential
energies (kcal mol−1) of the
minimized models are given in
parentheses

Fig. 1 Comparison of the Q, P and Z scores of different templates for the query protein cassiicolin-specific antibody. The best template, which
has a PDB code of 3ESU, based on these scores is enclosed in a red box

J Mol Model (2010) 16:1883–1893 1887



mainly at the VL–VH interface. The interacting residues
identified on the CDR regions of the cassiicolin-specific
scFv were as follows: SER30, TYR31, ASP49, TRP90,
SER91, SER92, ASN93, LYS173, and TYR216. The
residues were mainly involved in buried hydrophobic
interactions that stabilized the interface between the VH
and VL domains. Additionally, scFv ARG219 seemed to be
one of the interacting residues (Fig. 5a, b). From the
cassiicolin side, PHE8, PHE12, GLY18, ASN19 and
SER20 may interact with the scFv antibody. A number of
possible interactions between scFv and toxin residues can
be predicted in the modeled complex. In particular, some
hydrophobic interactions can be predicted between scFv
SER30-VL (CDR1-VL) and toxin PHE12 and ALA22,

scFv TYR31-VL (CDR1-VL) and toxin PHE12 and
TRP21, and scFv TRP90-VL (CDR3-VL) and toxin
SER20. Furthermore, in the modeled scFv–toxin complex,
toxin SER20 and GLY18 appear to interact with two serine
residues of the light chain scFv antibody, namely SER91-
VL (CDR3-VL) and scFv SER92-VL (CDR3-VL). Simi-
larly, hydrophobic interactions can also be predicted for scFv
TYR216-VH (CDR3-VH) and toxin PHE8 and GLY9 amino
acids. Moreover, the presence of a cation–π interaction can
also be predicted in the modeled complex between the scFv
ARG219 and toxin PHE8. The presence of these hydrophobic
residues and their interactions is consistent with experimen-
tally derived antibody structures and their complexes with
antigens [48, 52–54].

Model 1 Model 2 Model 3 Model 4 Model 5

Residues in most favored regions (%) 86.1 88.6 87.6 88.6 88.6

Residues in additional allowed regions (%) 9.5 7.5 8.5 7.5 8.0

Residues in generously allowed regions (%) 3.0 2.5 2.0 3.0 2.0

Residues in disallowed regions (%) 1.5 1.5 2.0 1.0 1.5

Table 2 Ramachandran analy-
sis of the five models

Fig. 2 Ramachandran analysis
of the modeled cassiicolin-
specific scFv antibody
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Computational alanine scanning and accessible surface area
(ASA) or solvent accessibility analysis of the docked
complex

Computational mutagenesis alanine scanning [44] analysis of
the proposed complex indicated positive binding free
energies (ΔΔGbind) upon alanine mutation for CDR-L1
TYR31 and ARG219 of the light and heavy chains,
respectively (Table 4). Similar positive binding free energies

were obtained for the cassiicolin residues PHE8 and PHE12.
Heavy chain ARG219 is well conserved in the template
structure 3ESU represented by ARG208, and is a part of the
heavy chain CDR region (H3). These results show the
significance of these residues in stabilizing the interfaces.
CDR-L1 TYR31 could be one of the hotspot residues
predicted to be primarily responsible for the binding energy
of the complex, contributing >1 kcal mol−1 of free energy.
Similarly, the substitution of SER30 and SER92 may have a
neutral effect on the stability of the complex, indicating that
these two amino acids could potentially participate in the
binding with the toxin.

To further identify most of the stabilizing/hotspot
residues, we also carried out an analysis of the interface
area of each residue. Although all ten interacting residues
exhibited changes in ASA, only four of them were
calculated by computational alanine scanning to either
destabilize the complex (hotspot) or to cause partial binding
energy loss (neutral) upon mutations in the scFv–toxin
complex rather than to destabilize the complex. This could
be due to the limitations of the computational alanine
scanning tools available to us (e.g., inter-residue coupling,
indirect effects and structural flexibility are not considered).

Table 3 Comparison of different docked complexes in terms of their
potential energies and the involvement of various CDR regions. Each
complex is numbered according to its ClusPro rank

Name PE (kcal/mol) CDRs that show contacts

Complex 6 −13329.58 VL1, VL2, VL3, VH2, VH3

Complex 19 −13227.53 VL1, VL2, VH1, VH3

Complex 21 −13206.90 VL1, VL2, VH3

Complex 22 −13272.90 VL2, VH1, VH3

Complex 24 −13301.21 VH1, VH2

Complex 29 −13308.86 VL1, VL2, VH3

Complex 30 −13338.29 VL1, VL2 VL3, VH3

Fig. 3 Multiple sequence align-
ment of cassiicolin-specific scFv
and its homologs. The CDR
regions of the homologs are
enclosed in black boxes, while
the CDRs of our query scFv are
enclosed within a blue box
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However, a broad picture of the hotspot candidates does
emerge. It would be interesting to obtain a more firmly
bound complex by introducing mutations that enhance the
change in ASA.

Additional analysis of the selected complexes was
performed by calculating the change in accessible surface
area (ASA). For the proposed cassiicolin–scFv complex
(i.e., complex 6), the total change in ASA observed was

Fig. 5 a Cassiicolin–scFv complex. In this figure, the scFv antibody is
represented in green and cassiicolin toxin in gray. Here, the interacting
residues (SER30, TYR31, ASP49, TRP90, SER91, SER92, ASN93,
LYS173, TYR216 AND ARG219) from scFv are shown as CPK, while

the interacting residues from cassiicolin toxin are shown as licorice and
are also labeled. b Cassiicolin–scFv complex: light chain CDRs are
shown in red and heavy chain CDRs in orange

Fig. 4 Comparison of the inter-
action energies for docked com-
plexes before energy
minimization and after energy
minimization. Here IE-AEM is
the interaction energy after en-
ergy minimization of the com-
plex, IE-BEM is the interaction
energy before energy minimiza-
tion, EIE-AEM is the electro-
static interaction energy after
energy minimization, EIE-BEM
is the electrostatic interaction
energy before energy minimiza-
tion, VDW-IE-AEM is the
VDW interaction energy after
energy minimization, and VDW-
IE-BEM is the VDW interaction
energy before energy minimiza-
tion

1890 J Mol Model (2010) 16:1883–1893



∼460 Å2, but the change in ASA for light chain CDRs is
greater than that for heavy chain CDRs, indicating a greater
contribution of the former to the binding. To further
establish the reliability of the modeled complex, we
computed the accessible surface area to compare the change
in the ASA of the docked complex with the available
experimental data in the benchmark database [55]. The
benchmark database contains 12 experimentally determined
antigen–antibody complexes, but there was no complex in
the benchmark database that was sufficiently similar to our
modeled complex to enable a comparison. Only one
antigen–antibody (PDB code: 1I9R) complex exhibited a
significant sequence similarity to our scFv antibody. Also,
the sizes of the antigens were very different in these cases.
While cassiicolin is 27 residues long, the length of the
antigen in 1I9R is 146 residues. No other antigen–antibody
complex in the benchmark database exhibited any similarity
with our scFv antibody. In a similar docking analysis,
Konstantakaki et al. [47] reported a total change in ASA of
>750 Å2 (as compared to ∼460 Å2 in our study) for their
proposed complex, which is comparable to that for an
intermediate size binding interface for an antigen–antibody
complex. The size of the antigen in their study was 370
residues.

The change in ASA for each of the CDRs upon complex
formation can be ordered as follows: L1>L3>H2>L2>H3>H1.
All CDRs seem to make contact with cassiicolin, but very few
contacts were observed for the second CDR of the light chain
(L2). This is in agreement with the general notion that L2 is
often not required for binding, while L3 and H3 are almost
always involved [56, 57]. Amino acid residues with large
changes in ASA in the cassiicolin–scFv complex for the light
chain are CDR-L1 TYR31 (∼93 Å2), CDR2-L2 ASP49
(∼20 Å2), CDR3-L3 TRP90 (∼10 Å2), SER91 (∼28 Å2),
SER92 (∼16 Å2), ASN93 (∼20 Å2), and for the heavy chain

are CDR2-H2 ASP170 (∼10 Å2), LYS177 (∼12 Å2) and
CDR3-H3 GLU203 (∼14 Å2). Additionally, a large change in
ASA was observed for ARG219 (∼39 Å2). Similarly, large
changes in ASA were observed for PHE8 (∼37 Å2), PHE12
(∼52 Å2), GLY18 (∼32 Å2), ASN19 (∼20 Å2) and SER20
(∼63 Å2) for cassiicolin, and these seem to face towards the
CDRs of the scFv antibody.

In the scFv–cassiicolin complex, ARG219 seems to be
one of the few residues that may contribute to the stability
of the complex, and it exhibits a significant change in ASA.
It would be interesting to explore how this residue is
involved in stabilizing the scFv–toxin complex by
performing mutagenesis experiments.

Conclusions

In the present work, we predict the structural characteriza-
tion of the molecular complex formed between a single-
chain variable fragment (scFv) antibody specific to C.
cassiicola toxin, cassiicolin, which induces necrotic lesions
in rubber tree (Hevea brasiliensis). The interacting antigen
and antibody surfaces complement each other structurally,
as in other known antigen–antibody interactions, as well as
chemically, with a few polar residues from the scFv
antibody interacting with the polar residues from the toxin.
Many of the surface amino acids of the antibody at the
interface are aromatic, and therefore present large areas of
hydrophobic surface to the toxin. Additionally, residues like
ARG219 may contribute to cation–π interactions with the
toxin. Finally, in the absence of the crystal structure of the
complex, we hope that the three-dimensional modeled
complex described here will prove valuable as a structural
scaffold for designing further mutational studies and
binding experiments.

Table 4 The results of computational alanine scanning on the
modeled scFv–cassiicolin complex. Here, Residue (PDB) represents
the residue number in the original PDB coordinate file, Residue
(complex) represents the continuous residue numbering of both chains,
starting with residue number 1, Protein type indicates whether the
binding partner is a receptor or a ligand, Chain represents the chain

name in the docked complex, and ΔΔG (bind) represents the
predicted change in binding free energy upon alanine mutation.
Positive values of ΔΔG (bind) indicate that replacement by alanine is
predicted to destabilize the complex, while negative values may
predict a stabilizing effect

Residue (PDB) Residue (complex) Protein type Chain ΔΔG (bind)

SER30 SER30 Receptor A −0.1
TYR31 TYR31 Receptor A 1.36

SER92 SER92 Receptor A −0.01
ARG219 ARG219 Receptor A 0.26

PHE8 PHE243 Ligand B 0.31

PHE12 PHE247 Ligand B 0.60

ASN19 ASN254 Ligand B 0.02

SER20 SER255 Ligand B −0.02
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